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Abstract

Drug repurposing has emerged as a powerful strategy to accelerate anticancer drug
discovery while reducing costs and development timelines. Beta-adrenergic receptor
antagonists (beta-blockers), widely prescribed for cardiovascular diseases, have demonstrated
increasing evidence of anticancer properties through modulation of proliferation, angiogenesis,
immune response, and metastatic signaling. In this study, we integrate deep learning—based
virtual screening with molecular docking to evaluate FDA-approved beta-blockers for potential
repositioning against cancer-related protein targets. A deep neural network (DNN) classification
model was trained using curated bioactivity datasets to predict anticancer likelihood, followed
by docking simulations to validate structural interactions. Among 108 beta-blockers and
derivatives screened, the DNN model identified propranolol, carvedilol, indenolol,
idropranolol, and a derivative of nifenalol as top anticancer candidates. Docking results further
supported these predictions, showing high binding affinities and favorable molecular interaction
profiles, particularly with the androgen receptor (PDB ID: ST8E). Our findings demonstrate the
utility of deep learning coupled with molecular docking for effective drug repurposing and
highlight promising beta-blocker candidates for future preclinical evaluation.
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1. Introduction

Cancer remains one of the leading causes of global morbidity and mortality, with more than 19 million new
cases reported annually and incidence continuing to rise worldwide. Despite significant progress in molecular
oncology, the development of new anticancer agents is still characterized by high attrition rates, long
development timelines, and substantial financial burdens that frequently exceed USD 2 billion for a single
approved drug [1, 2]. These challenges have intensified interest in drug repurposing, which aims to identify
new clinical applications for approved drugs that already possess well-characterized safety profiles,
pharmacokinetics, and manufacturing pipelines [3, 4]. This strategy significantly accelerates the translational
process and reduces the risk associated with traditional drug discovery.

Among the drug classes currently under investigation for repurposing, beta-adrenergic receptor antagonists
(beta-blockers) have attracted increasing attention due to emerging evidence linking B-adrenergic signaling
to cancer progression. Chronic stress, sympathetic nervous system activation, and catecholamine release are
known to promote tumor proliferation, angiogenesis, immune suppression, and metastatic dissemination
through P2-adrenergic receptor stimulation [5,6]. Consequently, the pharmacological blockade of B-
adrenergic receptors is being reconsidered as a potential strategy to inhibit tumor growth, with both
preclinical and clinical studies reporting encouraging results in breast, ovarian, melanoma, and prostate
cancers [7, 8].

Among beta-blockers, non-selective agents such as propranolol and carvedilol show the strongest anticancer
signatures. Propranolol has demonstrated anti-angiogenic, anti-proliferative, and immunomodulatory effects,
leading to its inclusion in multiple ongoing clinical trials for angiosarcoma, melanoma, and breast cancer [9,
10]. However, the precise molecular mechanisms and structural determinants underlying the anticancer
activity of various beta-blockers remain incompletely understood, highlighting the need for systematic
computational analyses.

With the rise of artificial intelligence in pharmaceutical sciences, deep learning has emerged as a
transformative approach capable of modeling high-dimensional chemical data and predicting biological
activity with superior accuracy compared to classical machine learning. Recent studies have demonstrated
the potential of deep learning to accelerate drug repurposing, optimize lead selection, and predict compound—
target interactions with unprecedented efficiency [11, 12]. When combined with structure-based techniques
such as virtual screening and molecular docking, deep learning enables rapid prioritization of repurposable
compounds and provides structural insights at the protein—ligand interface.

In prostate cancer research, the androgen receptor (AR)-particularly the ligand-binding domain represented
by PDB ID: 5ST8E-remains a central therapeutic target due to its key role in tumor proliferation, androgen
dependency, and resistance mechanisms [13]. Investigating the binding affinity of beta-blockers to the AR
may uncover novel inhibitors suitable for repositioning. [14]

In this study, we propose an integrated framework combining deep learning-based virtual screening and
molecular docking to systematically investigate the anticancer potential of FDA-approved beta-blockers. We
aim to (i) predict anticancer probability using a deep neural network trained on curated bioactivity datasets,
(i1) validate top candidates through molecular docking against the androgen receptor, and (iii) identify
structural features that contribute to strong ligand—receptor interactions. This work contributes to expanding
the role of beta-blockers in oncology and provides mechanistic insights to guide future experimental
validation.
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2. Materials and Methodology
2.1 Dataset Construction
2.1.1. Collection of Anticancer Bioactivity Data

A comprehensive dataset of compounds annotated for anticancer biological activity was constructed using
multiple public databases, including ChEMBL v33 for bioactivity assays on cancer cell lines (ICso, ECso, Ki
values), PubChem BioAssay for high-throughput and confirmatory anticancer screenings, and BindingDB
for compounds with affinity toward oncogenic targets. Only assays reporting standardized activity
measurements such as ICso, Glso or Ki were retained, and selection was limited to experiments conducted on
human cell lines from solid tumors such as breast, prostate, lung, and melanoma. Compounds were classified
as active when ICso values were below 10 uM and inactive when above 30 pM, with all intermediate values
discarded to ensure dataset consistency. After applying these inclusion criteria, a final dataset comprising
8,200 active and 11,600 inactive compounds was obtained.

2.1.2. Collection of Beta-Blocker Dataset

A curated library of 108 FDA-approved beta-blockers and structural derivatives was assembled to
comprehensively represent the chemical and pharmacological diversity of this therapeutic drug class. The
collection process relied on three primary sources: PubChem, used as the main structural database;
DrugBank, which provided clinical annotation, pharmacokinetic metadata, and regulatory status; and peer-
reviewed literature, including pharmacology reviews and pharmacopeias, which were essential for
identifying older or less-prescribed beta-blockers, as well as derivatives not systematically catalogued in
standard databases.

To ensure completeness, all compounds classified under “beta-adrenergic receptor antagonists” according to
the ATC classification system (C07A, CO7B, C07C, C07D) were retrieved. This included structurally diverse
molecules such as aryloxypropanolamines, imidazolinone derivatives, indole-based [-blockers, and
fluorinated analogs. The dataset included both Selective Bi-blockers (SBBs)-such as atenolol, metoprolol,
acebutolol, bisoprolol, and nebivolol—which preferentially target B: receptors, and Non-selective B-blockers
(NSBBs)-such as propranolol, carvedilol, nadolol, and timolol—which inhibit both B and B2 receptors and
are more frequently associated with anticancer effects in the literature. Several third-generation B-blockers,
including vasodilatory compounds (e.g., carvedilol, labetalol, celiprolol), were also incorporated to explore
potential off-target anticancer interactions.

For each molecule, the 3D standardized structure was downloaded in SDF format from PubChem to
ensure compatibility with cheminformatics tools. Each entry was annotated with:

e PubChem CID (unique chemical identifier),

e  Canonical SMILES,

e JUPAC name,

e  Molecular weight,

e Formal charge,

e  Structural subclass (aryloxypropanolamine, carbazole derivative, indole-based, etc.).

Where multiple stereoisomers existed (e.g., propranolol, carvedilol, labetalol), the stereochemistry was
preserved using annotated SDF records to avoid any ambiguity during downstream virtual screening.
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Molecules containing counterions (hydrochloride, maleate, etc.) were neutralized to retain only the active
pharmacophore.

The final dataset provided a chemically rich and pharmacologically relevant representation of B-blockers
suitable for computational modeling and structure—activity prediction.

2.2. Molecular Descriptor Generation

To convert the curated beta-blocker structures into machine-interpretable numerical formats, multiple layers
of molecular descriptors were computed using RDKit v2023.09.2, a widely adopted cheminformatics library.
Descriptor generation included physicochemical, topological, and structural features to capture different
aspects of chemical information.

2.2.1. Computation of 2D Physicochemical Descriptors

A comprehensive panel of 2D descriptors was calculated to capture global physicochemical properties
relevant to bioactivity prediction. These included:

e Molecular Weight (MW): Influences ADME properties and permeability.

e Hydrogen Bond Donor (HBD) and Acceptor (HBA) counts: Important for binding affinity
through electrostatic interactions.

e LogP (XlogP3): Indicator of lipophilicity, related to membrane penetration and receptor affinity.

o Topological Polar Surface Area (TPSA): Predicts absorption, blood—brain barrier permeability,
and solubility.

e Number of Rotatable Bonds: Reflects molecular flexibility, affecting conformational adaptability
during docking.

e Aromatic Ring Count: Relevant because many B-blockers interact through mn—m stacking or
hydrophobic interactions within protein binding pockets.

e Formal charge and number of heteroatoms, used for supplemental structural characterization.

All descriptors were normalized (min—max scaling) before being supplied to the machine-learning pipeline.
2.2.2. Structural Fingerprints for Deep Learning Models

To capture finer substructural patterns that contribute to anticancer activity, multiple molecular fingerprint
types were computed:

Extended Connectivity Fingerprints (ECFP4, 2048 bits)

e  These circular fingerprints encode local atomic environments up to radius 2.

e  Particularly suited for deep learning due to their ability to represent nonlinear substructures.

o ECFP4 was selected as the primary input representation for the neural network because it captures
subtle variations in pharmacophores essential for activity prediction [17].

MACCS Keys (166 bits)

e A curated set of predefined substructure patterns.
e  Useful for interpretability and as complementary structural indicators.
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PubChem Fingerprints (881 bits)
e Encodes more traditional structural fragments including atom pairs and simple ring systems.

To avoid redundancy and overfitting, all fingerprints were concatenated, and dimensionality reduction
techniques (variance thresholding) were applied. The final descriptor matrix contained 2048 relevant
molecular features, chosen for their strong discriminative power in preliminary feature-ranking experiments.

These descriptors formed the input space of the deep learning classifier responsible for predicting the
anticancer probability of each beta-blocker.

2.3. Deep Learning Model Design

2.3.1. Model Architecture

A feed-forward deep neural network (DNN) was developed to predict anticancer probability from molecular
fingerprints. The architecture began with an input layer of 2048 neurons corresponding to ECFP4 circular
fingerprints, followed by three fully connected hidden layers of 1024, 512, and 256 neurons, each activated
using ReLU to capture non-linear structure—activity relationships. Dropout layers with rates of 0.3 and 0.2
were included after the first and third dense layers to reduce overfitting, while batch normalization was
integrated after the second dense layer to stabilize training and improve gradient flow. The output layer
consisted of a single sigmoid neuron generating a probability score between 0 and 1. The architectural
choices—including depth, dimensionality, and regularization—were motivated by the high-dimensional
nature of chemical fingerprints and the need for strong generalization across structurally diverse compounds.

DNN Architecture (feed-forward)

Figure 1: Structural overview of the feed-forward Deep Neural Network used in this study.
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2.3.2. Training Procedure

The full dataset was randomly split into 70% training, 15% validation, and 15% independent test sets. Model
optimization was performed using the Adam optimizer with a learning rate of 1e-4, a batch size of 64, and
120 epochs, while binary cross-entropy was used as the loss function. During training, performance was
continuously monitored using accuracy, precision, recall, F1-score, and ROC-AUC to ensure balanced
classification of active and inactive compounds. A 10-fold cross-validation scheme was applied to assess the
robustness and stability of the model and to minimize sampling bias. After convergence, the trained DNN
was used to compute anticancer probability scores for each of the 108 beta-blockers.

2.4. Protein Target Selection and Preparation

The androgen receptor ligand-binding domain (AR-LBD) was selected as the docking target because of its
central role in prostate cancer proliferation and hormone-dependent signaling. The crystal structure
corresponding to PDB ID: STSE (1.95 A resolution) was retrieved from the RCSB Protein Data Bank.
Protein preparation was carried out using AutoDockTools v1.5.7 through the removal of crystallographic
water molecules and co-crystallized ligands, addition of polar hydrogens, assignment of Gasteiger partial
charges, and conversion to PDBQT format for docking compatibility. The active binding site was identified
by analyzing the position of the native ligand and further validated using Discovery Studio’s binding pocket
detection algorithm, ensuring correct grid placement during docking [16].

2.5. Ligand Preparation

All beta-blocker structures were prepared using Open Babel v3.1.1, starting from SDF files collected from
PubChem. Each molecule was converted to PDB and then to PDBQT format, followed by geometry and
energy minimization using the MMFF94 force field to obtain stable conformations. Partial charge assignment
and protonation-state correction at physiological pH (7.4) were performed to generate realistic ligand states.
When molecules existed in multiple stereoisomeric forms, stereochemistry was preserved. The final ligand
set consisted of the lowest-energy conformers optimized for docking.

2.6. Virtual Screening and Molecular Docking

Docking simulations were performed using AutoDock Vina embedded in the PyRx 0.8 environment. A cubic
grid box (25 x 25 x 25 A) was centered on the AR active site with a grid spacing of 0.375 A to capture all
possible ligand orientations within the binding pocket. Initial docking of all 108 beta-blockers was performed
with an exhaustiveness setting of 8 to enable rapid filtering of low-affinity compounds. The top 20 highest-
scoring ligands predicted by the DNN were then subjected to refined docking with an exhaustiveness of 108
to explore deeper conformational space. Binding affinity (AG), pose stability, and key interactions with
residues such as ARG, GLN, PHE, and TYR were assessed. Binding modes were visualized and analyzed
using Discovery Studio Visualizer 2024 and PyMOL v2.5.

2.7. ADMET and Drug-Likeness Evaluation

Pharmacokinetic and toxicity assessments were conducted to evaluate the suitability of top-scoring
compounds as drug candidates. ADMET predictions were performed using SwissADME, pkCSM, and
ADMETIab 2.0, covering gastrointestinal absorption, Caco-2 permeability, BBB penetration, CYP450
enzyme inhibition, renal clearance, hERG cardiotoxicity, hepatotoxicity, and general toxicological alerts.
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Compounds showing major ADMET liabilities—including strong hERG inhibition, severe hepatotoxicity,
or poor bioavailability—were deprioritized to ensure the selection of viable repositioning candidates.

2.8. Integration and Ranking of Final Candidates

Each beta-blocker was assigned a composite score integrating four weighted criteria: deep learning anticancer
probability (40%), docking affinity (30%), interaction quality within the target pocket (20%), and predicted
ADMET safety profile (10%). This scoring system ensured balanced evaluation across activity, structural
compatibility, and pharmacokinetic feasibility. Based on this composite ranking, five compounds emerged
as the strongest repositioning candidates : a nifenalol derivative, idropranolol, indenolol, carvedilol, and
propranolol, all of which displayed high predicted anticancer potential, favorable binding interactions with
AR-LBD, and acceptable ADMET characteristics [18].

Pseudo-code du modéle Deep Learning (DNN) pour la prédiction anticancéreuse
# Pseudo-code for Deep Learning Pipeline for Beta-Blocker Repurposing

BEGIN

# Step 1: Load Dataset

Load dataset of compounds

Load ECFP4 fingerprints (2048 bits per molecule)

Split dataset into Train (70%), Validation (15%), Test (15%)
# Step 2: Define Model Architecture

Initialize model

Add Input Layer (size = 2048)

Add Dense Layer 1 (1024 neurons, Activation = ReLU)
Add Dropout Layer (rate = 0.3)

Add Dense Layer 2 (512 neurons, Activation = ReLU)
Add Batch Normalization Layer

Add Dense Layer 3 (256 neurons, Activation ReLU)

Add Dropout Layer (rate = 0.2)

Add Output Layer (1 neuron, Activation = Sigmoid)

# ______________________________

# Step 3: Compile Model

# ______________________________

Set optimizer = Adam(learning rate = le-4)

Set loss = BinaryCrossEntropy

Set evaluation metrics = [Accuracy, Precision, Recall, Fl-score, AUC]
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# ______________________________

# Step 4: Train Model

# ______________________________

For epoch = 1 to 120:
Train on training set with batch size = 64
Validate on validation set
Save best model

# ______________________________

# Step 5: Evaluate Model

# ______________________________

Evaluate model on the test set
Compute Accuracy, Precision, Recall, Fl-score, ROC-AUC
# Step 6: Predict on Beta-Blocker Dataset
For each beta-blocker in the library:
Compute ECFP4 fingerprint
Predict anticancer probability
Save prediction score

Rank beta-blockers based on predicted probability

END

3. Results and Discussion

3.1 Results

3.1. 1 Deep Neural Network Performance

The DNN model trained on the curated anticancer dataset demonstrated strong predictive capability. Metrics
from the independent test set showed in table 1:

Table 1 : Performance metrics of the deep neural network model on the independent test set

Metric Value
Accuracy 0.91
Precision 0.89
Recall 0.87
F1-score 0.88
ROC-AUC 0.94
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e Interpretation: The high ROC-AUC (0.94) indicates excellent discrimination between active and
inactive compounds. The balance between precision and recall suggests the model minimizes both
false positives and false negatives, critical for drug repurposing where false positives can lead to
wasted resources and false negatives may miss potent candidates.

e Cross-validation stability: 10-fold cross-validation yielded standard deviations of <0.02 for
accuracy and ROC-AUC, confirming model robustness and generalizability.

ROC Curve

1.0 ROC (AUC = 0.94)

°
0

True Positive Rate
°
N

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 2 : ROC curve of the DNN model
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Figure 3: Training and validation ROC—AUC curves showing model performance over epochs.
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Figure 4: Training and validation loss curves of the Deep Neural Network model.

3.1.2 Virtual Screening and Docking Results
The top 20 beta-blockers predicted by the DNN were subjected to molecular docking with the androgen
receptor (AR-LBD, PDB ID: 5T8E). Among these, five compounds consistently ranked highest in both

predicted anticancer probability and docking affinity:

Table 2 : Top-ranking beta-blockers predicted for anticancer activity: DNN probabilities and docking

binding affinities
DNN Docking AG )
Key Interact
Compound Probability  ||(kcal/mol) ¢y tnteractions
H-bonds: ARG752, TYR763; n-n
Propranolol 0.92 -10.4 stacking: PHE764
) H-bonds: GLN711; hydrophobic:
Carvedilol 0.90 -10.1 LEU704
H-bonds: ARG752; n-n stacking:
Indenolol 0.88 -9.8 PLE764
H-bonds: TYR763; hydrophobi
Idropranolol 0.87 9.6 onas > YETOPROBIC
contacts
Nifenalol 0.86 9.5 H-bonds: GLN711; =m-mt stacking:
derivative ' ' PHE764

10
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e Binding analysis: Recurrent hydrogen bonds with ARG752 and TYR763 and n-m interactions with
PHE764 suggest a conserved pharmacophore among potent beta-blockers. Non-covalent interactions
predominantly stabilize the ligands in the AR binding pocket.

e Pose stability: RMSD values of top poses were <2.0 A, indicating stable docking conformations.

e Correlation: A moderate positive correlation (r = 0.72) between DNN probability and docking AG
supports the complementary nature of ligand-based Al prediction and structure-based validation.

3.1.3 ADMET and Drug-Likeness

Top-ranked compounds were evaluated for pharmacokinetics and toxicity:

Table 3 : ADMET profiles of top five beta-blockers identified for repurposing

Compound Gl ) BBB - CY?4,5_0 hlj:RG Hepatotoxicity
Absorption |Permeability |Inhibition Risk

Propranolol High Moderate None Low Low

Carvedilol High Low Weak Low Low

Indenolol Moderate Low None Low Low

Idropranolol  ||High Moderate None Low Low

I(;:i?;lizle High Low None Low Low

Interpretation: Favorable ADMET profiles support their potential repurposing. Low hERG risk
and hepatotoxicity reduce safety concerns, while high gastrointestinal absorption favors oral
administration.

3.2 Discussion

The results of this study demonstrate that non-selective beta-blockers, particularly propranolol and carvedilol,
exhibit the highest predicted anticancer potential according to both the deep neural network (DNN) model
and molecular docking analyses, consistent with prior preclinical and clinical evidence linking 2-adrenergic
receptor inhibition to suppression of tumor proliferation, angiogenesis, and metastatic signaling. The
structural analysis of ligand—receptor interactions revealed that recurrent hydrogen bonds with residues
ARG752 and GLN711, as well as n—n stacking with PHE764 within the androgen receptor ligand-binding
domain (AR-LBD, PDB ID: 5T8E), are likely key determinants of binding affinity and pharmacological
activity, suggesting the presence of a conserved pharmacophore among potent beta-blockers. Interestingly,
certain derivatives such as idropranolol and the nifenalol derivative, despite being less characterized in the
literature, displayed comparable docking energies and favorable DNN-predicted probabilities, highlighting
that subtle chemical modifications can preserve or even enhance anticancer activity, which may guide rational
design of optimized analogs [19]. ADMET evaluation further confirmed that these top candidates possess
favorable pharmacokinetic and safety profiles, including high gastrointestinal absorption, low hERG
inhibition, minimal hepatotoxicity, and negligible CYP450 liabilities, supporting their suitability for
repurposing. The moderate positive correlation observed between DNN probability scores and docking
affinities (r = 0.72) underscores the complementary nature of Al-based ligand prediction and structure-based
validation, where the DNN efficiently screens large chemical spaces and captures subtle nonlinear structure—

11
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activity relationships, while docking provides mechanistic insight at the molecular level. These findings
indicate that beta-blockers may exert anticancer effects not only through systemic B-adrenergic blockade but
also potentially via direct interactions with AR, competing with endogenous androgen ligands and
modulating downstream transcriptional pathways critical for tumor growth and progression [20]. Overall,
this integrated deep learning and docking pipeline proves to be an effective and scalable approach for
identifying repurposable drug candidates, offering a framework that can be generalized to other drug classes
and cancer targets, and setting the stage for subsequent experimental validation in preclinical models,
optimization of derivatives, and potential clinical translation.

4. Conclusion

In this study, we developed an integrated computational framework combining deep learning—based virtual
screening and molecular docking to evaluate the anticancer potential of FDA-approved beta-blockers. The
feed-forward deep neural network successfully predicted the likelihood of anticancer activity across 108
compounds, identifying propranolol, carvedilol, indenolol, idropranolol, and a nifenalol derivative as top
candidates. Subsequent molecular docking against the androgen receptor ligand-binding domain (PDB ID:
5T8E) confirmed favorable binding affinities and revealed key hydrogen-bonding and n—r interactions that
likely contribute to activity. ADMET profiling indicated that these compounds possess drug-like properties,
including high gastrointestinal absorption, low cardiotoxicity, and minimal hepatotoxicity, supporting their
potential repurposing in oncology. The study demonstrates the synergy between artificial intelligence and
structure-based approaches, highlighting how DNN models can rapidly prioritize candidates while docking
provides mechanistic validation at the molecular level. Overall, our findings suggest that certain beta-
blockers, particularly non-selective agents and selected derivatives, represent promising repurposable drugs
for cancer therapy, warranting further experimental validation in preclinical models and potential clinical
exploration. This work establishes a scalable and generalizable pipeline for drug repurposing that can
accelerate the identification of novel anticancer agents from existing pharmacological libraries.
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