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Abstract 

Drug repurposing has emerged as a powerful strategy to accelerate anticancer drug 

discovery while reducing costs and development timelines. Beta-adrenergic receptor 

antagonists (beta-blockers), widely prescribed for cardiovascular diseases, have demonstrated 

increasing evidence of anticancer properties through modulation of proliferation, angiogenesis, 

immune response, and metastatic signaling. In this study, we integrate deep learning–based 

virtual screening with molecular docking to evaluate FDA-approved beta-blockers for potential 

repositioning against cancer-related protein targets. A deep neural network (DNN) classification 

model was trained using curated bioactivity datasets to predict anticancer likelihood, followed 

by docking simulations to validate structural interactions. Among 108 beta-blockers and 

derivatives screened, the DNN model identified propranolol, carvedilol, indenolol, 

idropranolol, and a derivative of nifenalol as top anticancer candidates. Docking results further 

supported these predictions, showing high binding affinities and favorable molecular interaction 

profiles, particularly with the androgen receptor (PDB ID: 5T8E). Our findings demonstrate the 

utility of deep learning coupled with molecular docking for effective drug repurposing and 

highlight promising beta-blocker candidates for future preclinical evaluation. 
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1. Introduction 

Cancer remains one of the leading causes of global morbidity and mortality, with more than 19 million new 

cases reported annually and incidence continuing to rise worldwide. Despite significant progress in molecular 

oncology, the development of new anticancer agents is still characterized by high attrition rates, long 

development timelines, and substantial financial burdens that frequently exceed USD 2 billion for a single 

approved drug [1, 2]. These challenges have intensified interest in drug repurposing, which aims to identify 

new clinical applications for approved drugs that already possess well-characterized safety profiles, 

pharmacokinetics, and manufacturing pipelines [3, 4]. This strategy significantly accelerates the translational 

process and reduces the risk associated with traditional drug discovery. 

Among the drug classes currently under investigation for repurposing, beta-adrenergic receptor antagonists 

(beta-blockers) have attracted increasing attention due to emerging evidence linking β-adrenergic signaling 

to cancer progression. Chronic stress, sympathetic nervous system activation, and catecholamine release are 

known to promote tumor proliferation, angiogenesis, immune suppression, and metastatic dissemination 

through β2-adrenergic receptor stimulation [5,6]. Consequently, the pharmacological blockade of β-

adrenergic receptors is being reconsidered as a potential strategy to inhibit tumor growth, with both 

preclinical and clinical studies reporting encouraging results in breast, ovarian, melanoma, and prostate 

cancers [7, 8]. 

Among beta-blockers, non-selective agents such as propranolol and carvedilol show the strongest anticancer 

signatures. Propranolol has demonstrated anti-angiogenic, anti-proliferative, and immunomodulatory effects, 

leading to its inclusion in multiple ongoing clinical trials for angiosarcoma, melanoma, and breast cancer [9, 

10]. However, the precise molecular mechanisms and structural determinants underlying the anticancer 

activity of various beta-blockers remain incompletely understood, highlighting the need for systematic 

computational analyses. 

With the rise of artificial intelligence in pharmaceutical sciences, deep learning has emerged as a 

transformative approach capable of modeling high-dimensional chemical data and predicting biological 

activity with superior accuracy compared to classical machine learning. Recent studies have demonstrated 

the potential of deep learning to accelerate drug repurposing, optimize lead selection, and predict compound–

target interactions with unprecedented efficiency [11, 12]. When combined with structure-based techniques 

such as virtual screening and molecular docking, deep learning enables rapid prioritization of repurposable 

compounds and provides structural insights at the protein–ligand interface. 

In prostate cancer research, the androgen receptor (AR)-particularly the ligand-binding domain represented 

by PDB ID: 5T8E-remains a central therapeutic target due to its key role in tumor proliferation, androgen 

dependency, and resistance mechanisms [13]. Investigating the binding affinity of beta-blockers to the AR 

may uncover novel inhibitors suitable for repositioning. [14] 

In this study, we propose an integrated framework combining deep learning-based virtual screening and 

molecular docking to systematically investigate the anticancer potential of FDA-approved beta-blockers. We 

aim to (i) predict anticancer probability using a deep neural network trained on curated bioactivity datasets, 

(ii) validate top candidates through molecular docking against the androgen receptor, and (iii) identify 

structural features that contribute to strong ligand–receptor interactions. This work contributes to expanding 

the role of beta-blockers in oncology and provides mechanistic insights to guide future experimental 

validation. 
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2. Materials and Methodology 

2.1 Dataset Construction 

2.1.1. Collection of Anticancer Bioactivity Data 

A comprehensive dataset of compounds annotated for anticancer biological activity was constructed using 

multiple public databases, including ChEMBL v33 for bioactivity assays on cancer cell lines (IC₅₀, EC₅₀, Ki 

values), PubChem BioAssay for high-throughput and confirmatory anticancer screenings, and BindingDB 

for compounds with affinity toward oncogenic targets. Only assays reporting standardized activity 

measurements such as IC₅₀, GI₅₀ or Ki were retained, and selection was limited to experiments conducted on 

human cell lines from solid tumors such as breast, prostate, lung, and melanoma. Compounds were classified 

as active when IC₅₀ values were below 10 µM and inactive when above 30 µM, with all intermediate values 

discarded to ensure dataset consistency. After applying these inclusion criteria, a final dataset comprising 

8,200 active and 11,600 inactive compounds was obtained. 

2.1.2. Collection of Beta-Blocker Dataset 

A curated library of 108 FDA-approved beta-blockers and structural derivatives was assembled to 

comprehensively represent the chemical and pharmacological diversity of this therapeutic drug class. The 

collection process relied on three primary sources: PubChem, used as the main structural database; 

DrugBank, which provided clinical annotation, pharmacokinetic metadata, and regulatory status; and peer-

reviewed literature, including pharmacology reviews and pharmacopeias, which were essential for 

identifying older or less-prescribed beta-blockers, as well as derivatives not systematically catalogued in 

standard databases. 

To ensure completeness, all compounds classified under “beta-adrenergic receptor antagonists” according to 

the ATC classification system (C07A, C07B, C07C, C07D) were retrieved. This included structurally diverse 

molecules such as aryloxypropanolamines, imidazolinone derivatives, indole-based β-blockers, and 

fluorinated analogs. The dataset included both Selective β₁-blockers (SBBs)-such as atenolol, metoprolol, 

acebutolol, bisoprolol, and nebivolol—which preferentially target β₁ receptors, and Non-selective β-blockers 

(NSBBs)-such as propranolol, carvedilol, nadolol, and timolol—which inhibit both β₁ and β₂ receptors and 

are more frequently associated with anticancer effects in the literature. Several third-generation β-blockers, 

including vasodilatory compounds (e.g., carvedilol, labetalol, celiprolol), were also incorporated to explore 

potential off-target anticancer interactions. 

For each molecule, the 3D standardized structure was downloaded in SDF format from PubChem to 

ensure compatibility with cheminformatics tools. Each entry was annotated with: 

• PubChem CID (unique chemical identifier), 

• Canonical SMILES, 

• IUPAC name, 

• Molecular weight, 

• Formal charge, 

• Structural subclass (aryloxypropanolamine, carbazole derivative, indole-based, etc.). 

Where multiple stereoisomers existed (e.g., propranolol, carvedilol, labetalol), the stereochemistry was 

preserved using annotated SDF records to avoid any ambiguity during downstream virtual screening. 
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Molecules containing counterions (hydrochloride, maleate, etc.) were neutralized to retain only the active 

pharmacophore. 

The final dataset provided a chemically rich and pharmacologically relevant representation of β-blockers 

suitable for computational modeling and structure–activity prediction. 

2.2. Molecular Descriptor Generation  

To convert the curated beta-blocker structures into machine-interpretable numerical formats, multiple layers 

of molecular descriptors were computed using RDKit v2023.09.2, a widely adopted cheminformatics library. 

Descriptor generation included physicochemical, topological, and structural features to capture different 

aspects of chemical information. 

2.2.1. Computation of 2D Physicochemical Descriptors 

A comprehensive panel of 2D descriptors was calculated to capture global physicochemical properties 

relevant to bioactivity prediction. These included: 

• Molecular Weight (MW): Influences ADME properties and permeability. 

• Hydrogen Bond Donor (HBD) and Acceptor (HBA) counts: Important for binding affinity 

through electrostatic interactions. 

• LogP (XlogP3): Indicator of lipophilicity, related to membrane penetration and receptor affinity. 

• Topological Polar Surface Area (TPSA): Predicts absorption, blood–brain barrier permeability, 

and solubility. 

• Number of Rotatable Bonds: Reflects molecular flexibility, affecting conformational adaptability 

during docking. 

• Aromatic Ring Count: Relevant because many β-blockers interact through π–π stacking or 

hydrophobic interactions within protein binding pockets. 

• Formal charge and number of heteroatoms, used for supplemental structural characterization. 

All descriptors were normalized (min–max scaling) before being supplied to the machine-learning pipeline. 

2.2.2. Structural Fingerprints for Deep Learning Models 

To capture finer substructural patterns that contribute to anticancer activity, multiple molecular fingerprint 

types were computed: 

Extended Connectivity Fingerprints (ECFP4, 2048 bits) 

• These circular fingerprints encode local atomic environments up to radius 2. 

• Particularly suited for deep learning due to their ability to represent nonlinear substructures. 

• ECFP4 was selected as the primary input representation for the neural network because it captures 

subtle variations in pharmacophores essential for activity prediction [17]. 

MACCS Keys (166 bits) 

• A curated set of predefined substructure patterns. 

• Useful for interpretability and as complementary structural indicators. 
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PubChem Fingerprints (881 bits) 

• Encodes more traditional structural fragments including atom pairs and simple ring systems. 

To avoid redundancy and overfitting, all fingerprints were concatenated, and dimensionality reduction 

techniques (variance thresholding) were applied. The final descriptor matrix contained 2048 relevant 

molecular features, chosen for their strong discriminative power in preliminary feature-ranking experiments. 

These descriptors formed the input space of the deep learning classifier responsible for predicting the 

anticancer probability of each beta-blocker. 

2.3. Deep Learning Model Design 

2.3.1. Model Architecture 

A feed-forward deep neural network (DNN) was developed to predict anticancer probability from molecular 

fingerprints. The architecture began with an input layer of 2048 neurons corresponding to ECFP4 circular 

fingerprints, followed by three fully connected hidden layers of 1024, 512, and 256 neurons, each activated 

using ReLU to capture non-linear structure–activity relationships. Dropout layers with rates of 0.3 and 0.2 

were included after the first and third dense layers to reduce overfitting, while batch normalization was 

integrated after the second dense layer to stabilize training and improve gradient flow. The output layer 

consisted of a single sigmoid neuron generating a probability score between 0 and 1. The architectural 

choices—including depth, dimensionality, and regularization—were motivated by the high-dimensional 

nature of chemical fingerprints and the need for strong generalization across structurally diverse compounds. 

 

 

 

Figure 1: Structural overview of the feed-forward Deep Neural Network used in this study. 
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2.3.2. Training Procedure 

The full dataset was randomly split into 70% training, 15% validation, and 15% independent test sets. Model 

optimization was performed using the Adam optimizer with a learning rate of 1e-4, a batch size of 64, and 

120 epochs, while binary cross-entropy was used as the loss function. During training, performance was 

continuously monitored using accuracy, precision, recall, F1-score, and ROC-AUC to ensure balanced 

classification of active and inactive compounds. A 10-fold cross-validation scheme was applied to assess the 

robustness and stability of the model and to minimize sampling bias. After convergence, the trained DNN 

was used to compute anticancer probability scores for each of the 108 beta-blockers. 

2.4. Protein Target Selection and Preparation 

The androgen receptor ligand-binding domain (AR-LBD) was selected as the docking target because of its 

central role in prostate cancer proliferation and hormone-dependent signaling. The crystal structure 

corresponding to PDB ID: 5T8E (1.95 Å resolution) was retrieved from the RCSB Protein Data Bank. 

Protein preparation was carried out using AutoDockTools v1.5.7 through the removal of crystallographic 

water molecules and co-crystallized ligands, addition of polar hydrogens, assignment of Gasteiger partial 

charges, and conversion to PDBQT format for docking compatibility. The active binding site was identified 

by analyzing the position of the native ligand and further validated using Discovery Studio’s binding pocket 

detection algorithm, ensuring correct grid placement during docking [16]. 

2.5. Ligand Preparation 

All beta-blocker structures were prepared using Open Babel v3.1.1, starting from SDF files collected from 

PubChem. Each molecule was converted to PDB and then to PDBQT format, followed by geometry and 

energy minimization using the MMFF94 force field to obtain stable conformations. Partial charge assignment 

and protonation-state correction at physiological pH (7.4) were performed to generate realistic ligand states. 

When molecules existed in multiple stereoisomeric forms, stereochemistry was preserved. The final ligand 

set consisted of the lowest-energy conformers optimized for docking. 

2.6. Virtual Screening and Molecular Docking 

Docking simulations were performed using AutoDock Vina embedded in the PyRx 0.8 environment. A cubic 

grid box (25 × 25 × 25 Å) was centered on the AR active site with a grid spacing of 0.375 Å to capture all 

possible ligand orientations within the binding pocket. Initial docking of all 108 beta-blockers was performed 

with an exhaustiveness setting of 8 to enable rapid filtering of low-affinity compounds. The top 20 highest-

scoring ligands predicted by the DNN were then subjected to refined docking with an exhaustiveness of 108 

to explore deeper conformational space. Binding affinity (ΔG), pose stability, and key interactions with 

residues such as ARG, GLN, PHE, and TYR were assessed. Binding modes were visualized and analyzed 

using Discovery Studio Visualizer 2024 and PyMOL v2.5. 

2.7. ADMET and Drug-Likeness Evaluation 

Pharmacokinetic and toxicity assessments were conducted to evaluate the suitability of top-scoring 

compounds as drug candidates. ADMET predictions were performed using SwissADME, pkCSM, and 

ADMETlab 2.0, covering gastrointestinal absorption, Caco-2 permeability, BBB penetration, CYP450 

enzyme inhibition, renal clearance, hERG cardiotoxicity, hepatotoxicity, and general toxicological alerts. 
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Compounds showing major ADMET liabilities—including strong hERG inhibition, severe hepatotoxicity, 

or poor bioavailability—were deprioritized to ensure the selection of viable repositioning candidates. 

2.8. Integration and Ranking of Final Candidates 

Each beta-blocker was assigned a composite score integrating four weighted criteria: deep learning anticancer 

probability (40%), docking affinity (30%), interaction quality within the target pocket (20%), and predicted 

ADMET safety profile (10%). This scoring system ensured balanced evaluation across activity, structural 

compatibility, and pharmacokinetic feasibility. Based on this composite ranking, five compounds emerged 

as the strongest repositioning candidates : a nifenalol derivative, idropranolol, indenolol, carvedilol, and 

propranolol, all of which displayed high predicted anticancer potential, favorable binding interactions with 

AR-LBD, and acceptable ADMET characteristics [18]. 

Pseudo-code du modèle Deep Learning (DNN) pour la prédiction anticancéreuse 

# Pseudo-code for Deep Learning Pipeline for Beta-Blocker Repurposing 

 

BEGIN 

 

    # ------------------------------ 

    # Step 1: Load Dataset 

    # ------------------------------ 

    Load dataset of compounds 

    Load ECFP4 fingerprints (2048 bits per molecule) 

    Split dataset into Train (70%), Validation (15%), Test (15%) 

 

    # ------------------------------ 

    # Step 2: Define Model Architecture 

    # ------------------------------ 

    Initialize model 

 

    Add Input Layer (size = 2048) 

 

    Add Dense Layer 1 (1024 neurons, Activation = ReLU) 

    Add Dropout Layer (rate = 0.3) 

 

    Add Dense Layer 2 (512 neurons, Activation = ReLU) 

    Add Batch Normalization Layer 

 

    Add Dense Layer 3 (256 neurons, Activation = ReLU) 

    Add Dropout Layer (rate = 0.2) 

 

    Add Output Layer (1 neuron, Activation = Sigmoid) 

 

    # ------------------------------ 

    # Step 3: Compile Model 

    # ------------------------------ 

    Set optimizer = Adam(learning_rate = 1e-4) 

    Set loss = BinaryCrossEntropy 

    Set evaluation metrics = [Accuracy, Precision, Recall, F1-score, AUC] 
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    # ------------------------------ 

    # Step 4: Train Model 

    # ------------------------------ 

    For epoch = 1 to 120: 

        Train on training set with batch_size = 64 

        Validate on validation set 

        Save best model 

 

    # ------------------------------ 

    # Step 5: Evaluate Model 

    # ------------------------------ 

    Evaluate model on the test set 

    Compute Accuracy, Precision, Recall, F1-score, ROC-AUC 

 

    # ------------------------------ 

    # Step 6: Predict on Beta-Blocker Dataset 

    # ------------------------------ 

    For each beta-blocker in the library: 

        Compute ECFP4 fingerprint 

        Predict anticancer probability 

        Save prediction score 

 

    Rank beta-blockers based on predicted probability 

 

END 

 

3. Results and Discussion 

 

3.1 Results  

3.1. 1 Deep Neural Network Performance 

The DNN model trained on the curated anticancer dataset demonstrated strong predictive capability. Metrics 

from the independent test set showed in table 1: 

Table 1 : Performance metrics of the deep neural network model on the independent test set 

Metric Value 

Accuracy 0.91 

Precision 0.89 

Recall 0.87 

F1-score 0.88 

ROC-AUC 0.94 
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• Interpretation: The high ROC-AUC (0.94) indicates excellent discrimination between active and 

inactive compounds. The balance between precision and recall suggests the model minimizes both 

false positives and false negatives, critical for drug repurposing where false positives can lead to 

wasted resources and false negatives may miss potent candidates. 

• Cross-validation stability: 10-fold cross-validation yielded standard deviations of <0.02 for 

accuracy and ROC-AUC, confirming model robustness and generalizability. 

 

 

Figure 2 : ROC curve of the DNN model 

 

Figure 3: Training and validation ROC–AUC curves showing model performance over epochs. 
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Figure 4: Training and validation loss curves of the Deep Neural Network model. 

 

3.1.2 Virtual Screening and Docking Results 

The top 20 beta-blockers predicted by the DNN were subjected to molecular docking with the androgen 

receptor (AR-LBD, PDB ID: 5T8E). Among these, five compounds consistently ranked highest in both 

predicted anticancer probability and docking affinity: 

Table 2 : Top-ranking beta-blockers predicted for anticancer activity: DNN probabilities and docking 

binding affinities 

Compound 
DNN 

Probability 

Docking ΔG 

(kcal/mol) 
Key Interactions 

Propranolol 0.92 -10.4 
H-bonds: ARG752, TYR763; π-π 

stacking: PHE764 

Carvedilol 0.90 -10.1 
H-bonds: GLN711; hydrophobic: 

LEU704 

Indenolol 0.88 -9.8 
H-bonds: ARG752; π-π stacking: 

PHE764 

Idropranolol 0.87 -9.6 
H-bonds: TYR763; hydrophobic 

contacts 

Nifenalol 

derivative 
0.86 -9.5 

H-bonds: GLN711; π-π stacking: 

PHE764 
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• Binding analysis: Recurrent hydrogen bonds with ARG752 and TYR763 and π-π interactions with 

PHE764 suggest a conserved pharmacophore among potent beta-blockers. Non-covalent interactions 

predominantly stabilize the ligands in the AR binding pocket. 

• Pose stability: RMSD values of top poses were <2.0 Å, indicating stable docking conformations. 

• Correlation: A moderate positive correlation (r = 0.72) between DNN probability and docking ΔG 

supports the complementary nature of ligand-based AI prediction and structure-based validation. 

3.1.3 ADMET and Drug-Likeness 

Top-ranked compounds were evaluated for pharmacokinetics and toxicity: 

Table 3 : ADMET profiles of top five beta-blockers identified for repurposing 

Compound 
GI 

Absorption 

BBB 

Permeability 

CYP450 

Inhibition 

hERG 

Risk 
Hepatotoxicity 

Propranolol High Moderate None Low Low 

Carvedilol High Low Weak Low Low 

Indenolol Moderate Low None Low Low 

Idropranolol High Moderate None Low Low 

Nifenalol 

derivative 
High Low None Low Low 

Interpretation: Favorable ADMET profiles support their potential repurposing. Low hERG risk 

and hepatotoxicity reduce safety concerns, while high gastrointestinal absorption favors oral 

administration. 

 

3.2 Discussion  

The results of this study demonstrate that non-selective beta-blockers, particularly propranolol and carvedilol, 

exhibit the highest predicted anticancer potential according to both the deep neural network (DNN) model 

and molecular docking analyses, consistent with prior preclinical and clinical evidence linking β2-adrenergic 

receptor inhibition to suppression of tumor proliferation, angiogenesis, and metastatic signaling. The 

structural analysis of ligand–receptor interactions revealed that recurrent hydrogen bonds with residues 

ARG752 and GLN711, as well as π–π stacking with PHE764 within the androgen receptor ligand-binding 

domain (AR-LBD, PDB ID: 5T8E), are likely key determinants of binding affinity and pharmacological 

activity, suggesting the presence of a conserved pharmacophore among potent beta-blockers. Interestingly, 

certain derivatives such as idropranolol and the nifenalol derivative, despite being less characterized in the 

literature, displayed comparable docking energies and favorable DNN-predicted probabilities, highlighting 

that subtle chemical modifications can preserve or even enhance anticancer activity, which may guide rational 

design of optimized analogs [19]. ADMET evaluation further confirmed that these top candidates possess 

favorable pharmacokinetic and safety profiles, including high gastrointestinal absorption, low hERG 

inhibition, minimal hepatotoxicity, and negligible CYP450 liabilities, supporting their suitability for 

repurposing. The moderate positive correlation observed between DNN probability scores and docking 

affinities (r = 0.72) underscores the complementary nature of AI-based ligand prediction and structure-based 

validation, where the DNN efficiently screens large chemical spaces and captures subtle nonlinear structure–
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activity relationships, while docking provides mechanistic insight at the molecular level. These findings 

indicate that beta-blockers may exert anticancer effects not only through systemic β-adrenergic blockade but 

also potentially via direct interactions with AR, competing with endogenous androgen ligands and 

modulating downstream transcriptional pathways critical for tumor growth and progression [20]. Overall, 

this integrated deep learning and docking pipeline proves to be an effective and scalable approach for 

identifying repurposable drug candidates, offering a framework that can be generalized to other drug classes 

and cancer targets, and setting the stage for subsequent experimental validation in preclinical models, 

optimization of derivatives, and potential clinical translation. 

 

4. Conclusion  

In this study, we developed an integrated computational framework combining deep learning–based virtual 

screening and molecular docking to evaluate the anticancer potential of FDA-approved beta-blockers. The 

feed-forward deep neural network successfully predicted the likelihood of anticancer activity across 108 

compounds, identifying propranolol, carvedilol, indenolol, idropranolol, and a nifenalol derivative as top 

candidates. Subsequent molecular docking against the androgen receptor ligand-binding domain (PDB ID: 

5T8E) confirmed favorable binding affinities and revealed key hydrogen-bonding and π–π interactions that 

likely contribute to activity. ADMET profiling indicated that these compounds possess drug-like properties, 

including high gastrointestinal absorption, low cardiotoxicity, and minimal hepatotoxicity, supporting their 

potential repurposing in oncology. The study demonstrates the synergy between artificial intelligence and 

structure-based approaches, highlighting how DNN models can rapidly prioritize candidates while docking 

provides mechanistic validation at the molecular level. Overall, our findings suggest that certain beta-

blockers, particularly non-selective agents and selected derivatives, represent promising repurposable drugs 

for cancer therapy, warranting further experimental validation in preclinical models and potential clinical 

exploration. This work establishes a scalable and generalizable pipeline for drug repurposing that can 

accelerate the identification of novel anticancer agents from existing pharmacological libraries. 
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