

Contamination of herbal products by mycotoxins: a review of the public health implications

Derbal Saïd ^{a*}, Belafdal Imen ^b

^a Pharmaceutical Sciences Research Center, 25016 Ali Mendjeli, Constantine, Algeria.

^b Laboratory of Biochemistry, Genetic and Vegetal Biotechnology, Faculty of Nature and Life Sciences, University of Constantine 1, 25000 Constantine, Algeria.

Abstract

The use of medicinal plants and their derivatives for the prevention and treatment of various diseases is widespread. However, contamination of these products has become a significant global concern in recent decades due to the potential health risks to consumers. Ensuring the quality and safety of herbal products is therefore essential. Among the most hazardous contaminants are mycotoxins-naturally occurring toxic compounds produced by certain fungi-which pose serious public health risks due to their toxicological effects. This review provides an overview of mycotoxin contamination in herbal products, outlines the permissible contamination limits as established by the European Pharmacopoeia, discusses both clinical and experimental evidence of mycotoxin toxicity, and proposes strategies for preventing contamination.

Keywords:

Medicinal plants, Contamination, Mycotoxins, Toxicity.

*Received October 21, 2025; accepted December 09, 2025

*Corresponding author

Email address: derbal.said@crsp.dz (Derbal Saïd)

Cited as: Derbal S, Belafdal I. Contamination of herbal products by mycotoxins: a review of the public health implications. J. Mol. Pharm. Sci. 04 (02), 2025, 46-54.

1. Introduction

A medicinal plant is defined as any plant that contains, in one or more of its parts, substances that can be used for therapeutic purposes or serve as precursors for the semi-synthesis of pharmaceutical compounds [1]. Medicinal plants are widely utilized both as home remedies and as raw materials in the pharmaceutical industry [2, 3]. Extracts obtained from these plants have been used in traditional medicine for thousands of years, and these practices remain prevalent today [4, 5]. They are employed to prevent or treat various ailments and health conditions and are often perceived as natural and safe. In many developing countries, herbal medicine remains the primary form of healthcare. Meanwhile, in developed countries, the use of herbal products has grown significantly in recent decades, leading to a substantial increase in the commercialization of medicinal plants.

One of the most critical safety concerns associated with medicinal plants is their contamination by mycotoxins. Mycotoxins are highly toxic secondary metabolites produced by various fungi, including species of *Aspergillus*, *Fusarium*, *Penicillium*, and others [6]. Controlling mycotoxin contamination is particularly challenging due to their low molecular weight, thermal stability, and lack of immunogenicity [7]. Medicinal plants can become contaminated with molds at multiple stages—during harvesting, processing, storage, and transportation. Under favorable environmental conditions, these fungi can persist and proliferate, leading to the accumulation of mycotoxins over time [8]. The primary mycotoxins of public health concern include aflatoxins (AF), ochratoxins (OT), fumonisins (F), zearalenone (ZEA), and trichothecenes (T), particularly deoxynivalenol (DON) and T-2 toxin.

Unfavorable climatic conditions, insect infestations, and poor handling during transport and storage can promote fungal contamination of medicinal plants and lead to the production of mycotoxins [9]. Inadequate packaging further exacerbates the risk of mycotoxin contamination [2]. The presence of mycotoxins not only diminishes the therapeutic efficacy of medicinal plants but can also render the products unsuitable for national and international trade [10]. Therefore, quality control measures and the establishment of regulatory standards for mycotoxin levels in herbal products are essential to protect consumer health [11]. In response to these concerns, the European Pharmacopoeia (EP) has set maximum permissible limits for mycotoxins in medicinal plants and their derived products [12]. In general, herbal medicines are expected to meet the same quality standards as conventional pharmaceutical drugs.

In this review, we provide an overview of the contamination of herbal products by mycotoxins, including reported cases, regulatory limits, the health risks associated with mycotoxin exposure, and strategies for prevention and control aimed at ensuring consumer safety.

2. Generalities

Mycotoxins can contaminate a wide range of agricultural products and foodstuffs [13]. Among them, aflatoxins are the most widespread, particularly in crops grown in hot and humid regions [14]. The proportion of *Aspergillus flavus* strains capable of producing aflatoxins on culture media can reach up to 50% [15, 16]. However, aflatoxins may be absent in some samples despite a high presence of aflatoxin-producing strains, indicating that contamination depends on multiple environmental and physiological factors [17].

Aspergillus flavus exhibits optimal growth at temperatures between 36–38 °C, while aflatoxin production is maximized at temperatures ranging from 25–35 °C [18]. These conditions, commonly found in tropical and subtropical regions, promote both fungal proliferation and mycotoxin production [19]. Each fungal species has a specific minimum water activity (aw) threshold below which it cannot grow or produce toxins [20]. For example, the minimum aw values for the growth of *A. flavus* and *A. parasiticus* are 0.78–0.80 and 0.80, respectively, while their minimum aw values for aflatoxin production are 0.83–0.87 and 0.87, respectively.

Similarly, the minimum aw values for the growth of *Aspergillus ochraceus*, *Penicillium cyclopium*, and *Penicillium viridicatum* are 0.77–0.83, 0.81–0.85, and 0.83, respectively. Their respective minimum aw thresholds for ochratoxin A production are 0.83–0.87, 0.87–0.90, and 0.83–0.86 [21].

3. Admissible limits of contamination

The European Pharmacopoeia has established maximum permissible limits for mycotoxin contamination in herbal medicinal products: 2 µg/kg for aflatoxin B1 (AFB1) and 4 µg/kg for total aflatoxins [12].

For other mycotoxins, there is generally no harmonized limit in the European Pharmacopoeia; these toxins are not yet regulated for medicinal plants.

4. Contamination reports

A total of 39 commercially available ginger products from six manufacturers were analyzed using reversed-phase liquid chromatography (RPLC) with fluorescence detection. Among these, 26 samples were found to be contaminated with aflatoxins (AF) at concentrations ranging from 1 to 31 ng/g, while 29 samples contained ochratoxin A (OTA) at levels between 1 and 10 ng/g. Ten samples were free of both AF and OTA. Additionally, 10 finished ginseng products were analyzed using liquid chromatography–tandem mass spectrometry (LC-MS/MS); three of them contained AF at 0.1 ng/g, and four were contaminated with OTA at concentrations ranging from 0.4 to 1.8 ng/g [22]. In Spain, 84 samples of aromatic and medicinal herbs were examined using ELISA to detect various mycotoxins. The contamination rates were notably high: 99% for T-2 toxin, 98% for zearalenone (ZEA), 96% for aflatoxins, 63% for OTA, 62% for deoxynivalenol (DON), 61% for citrinin, and 13% for fumonisins (FB). All samples showed multi-mycotoxin contamination, with nearly 87% containing four or more mycotoxins simultaneously—most commonly AF, T-2, and ZEA [23]. In Argentina, 152 dried medicinal and aromatic herbs were tested using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). The analysis confirmed the presence of aflatoxins, ochratoxins, and fumonisins B1 and B2 [16].

In India, 15 commercially marketed spices were screened for multiple mycotoxins, including aflatoxins, rubratoxins, ochratoxin A, citrinin, zearalenone, and sterigmatocystin. Coriander and fennel had the highest number of positive samples and the highest levels of contamination, while cinnamon, cloves, yellow moss, and Indian mustard showed no detectable mycotoxins. Aflatoxins were the most frequently detected, with significantly lower incidence rates for the other toxins [24].

In Morocco, 10 olive samples obtained from retail outlets and supermarkets were analyzed by HPLC with fluorescence detection. All samples were contaminated with OTA and AFB, while 80% also contained citrinin [25]. In Turkey, visibly moldy dried figs deemed unfit for consumption were analyzed using liquid chromatography coupled with mass spectrometry. The results revealed the presence of several fungal metabolites, including fumonisins B2 and B4, patulin, HT-2 toxin, and zearalenone [26]. In a separate study conducted in Turkey, both OTA and AFB1 were detected in local and imported dried figs [27].

5. Mycotoxicities

5.1. Aflatoxins

Aflatoxins are among the most potent naturally occurring carcinogens, affecting both humans and various animal species [28, 29]. The International Agency for Research on Cancer (IARC) has classified aflatoxins in Group 1, indicating they are carcinogenic to humans [30]. In humans, acute aflatoxicosis—resulting from a single or multiple high-level exposures—can be fatal, while chronic exposure is associated with hepatocellular carcinoma, immunosuppression, and growth retardation [31, 32]. Epidemiological studies have demonstrated a strong correlation between dietary aflatoxin exposure and the incidence of liver cancer [33].

Aflatoxin B1 (AFB1) is considered the most toxic and carcinogenic aflatoxin, and one of the most potent known hepatocarcinogens in humans [29, 34]. Animal studies have shown that AFB1 can also produce teratogenic and embryotoxic effects [35]. Moreover, synergistic interactions between AFB1 exposure and chronic hepatitis B virus (HBV) infection significantly increase the risk of developing hepatocellular carcinoma [36, 37]. Similar synergistic effects have also been reported with hepatitis C virus (HCV) infection [38].

The median lethal dose (LD_{50}) of AFB1 varies across species, ranging from 1 to 50 mg/kg body weight in most experimental animals [39]. Among these, rats are particularly susceptible to AFB1-induced carcinogenesis, while mice exhibit greater resistance [40]. Additionally, exposure to aflatoxins has been shown to induce lung carcinogenesis in several animal models [41, 42, 43].

5.2. Ochratoxin A

Ochratoxin A (OTA) exhibits a wide range of toxic effects, including nephrotoxicity, teratogenicity, genotoxicity, neurotoxicity, hepatotoxicity, and immunosuppression [44]. The International Agency for Research on Cancer (IARC) has classified OTA as a possible human carcinogen (Group 2B) [30]. Notably, chronic exposure to low doses of OTA may be more toxic than acute high-dose exposure [45].

OTA has been implicated in the development of Balkan endemic nephropathy, a fatal kidney disease affecting certain populations in Eastern Europe [46, 47]. Additionally, early-life exposure to OTA has been associated with an increased risk of testicular cancer [48].

The median lethal dose (LD_{50}) of OTA in experimental animals ranges from 0.2 to 58.3 mg/kg, depending on the species [44]. Teratogenic effects—such as craniofacial malformations and reduced birth weight—have been reported in several animal models following prenatal OTA exposure [45, 49].

5.3. Fumonisins

The International Agency for Research on Cancer (IARC) has classified fumonisin B1 (FB1) as possibly carcinogenic to humans (Group 2B) [30, 50]. Human exposure to fumonisins has been linked to increased risks of esophageal and liver cancers [50, 51, 52]. Fumonisins frequently contaminate corn, and epidemiological studies have reported a higher incidence of esophageal cancer in populations from regions where corn and corn-based products are dietary staples [53, 54]. Furthermore, FB1 has demonstrated hepatotoxic, nephrotoxic, and immunosuppressive effects in various animal models [55].

5.4. Zearalenone

The International Agency for Research on Cancer (IARC) classifies zearalenone (ZEA) as possibly carcinogenic to humans [30]. Produced by *Fusarium* species and isolated from medicinal plants, ZEA has demonstrated cytotoxic effects in mammalian cells [56] and exhibits competitive binding to estrogen receptors in vitro [57].

ZEA exposure has been linked to a range of health effects, including early onset of puberty in children [58, 59, 60], esophageal cancer [61], cervical cancer, endometrial hyperplasia [62], and estrogenic effects in postmenopausal women [63]. Animal studies further confirm ZEA's adverse impact on reproductive physiology [64, 65, 66], as well as its potential to induce chronic progressive hematotoxicity, testicular atrophy, cataracts, retinopathy and nephropathy [67].

5.5. Trichothecenes (Deoxynivalenol and T-2)

Deoxynivalenol (DON) has been shown to alter brain neurochemistry [68]. Chronic exposure to low doses of DON can impair growth in children [69], while high doses may induce vomiting and, in severe cases, can be fatal [70, 71]. Additionally, DON exerts immunosuppressive effects [72].

T-2 toxin is associated with a range of toxic effects, including carcinogenesis, immunosuppression, neurotransmitter imbalances, weight loss, growth retardation, oral lesions, diarrhea

and vomiting [73, 74, 75]. Epidemiological studies have also linked T-2 contamination to Kashin-Beck disease, a chronic osteoarthropathy [76].

Experimental exposure to T-2 has caused degenerative joint changes in animal models [77, 78, 79]. Moreover, a single dose of T-2 administered to rats resulted in metabolic disruptions, alterations in metabolic pathways, and changes in the intestinal microbiota [75]. Table 1 summarizes the characteristics of contamination in medicinal plant products.

Table 1. Mycotoxins contaminating medicinal plant products

Mycotoxin	Main Source	Major Toxic Effects	IARC Classification	LD ₅₀ Range
Aflatoxin B ₁	<i>Aspergillus flavus, A. parasiticus</i>	Severe hepatotoxicity, mutagenic, immunosuppressive, highly potent liver carcinogen	Group 1 (carcinogenic to humans)	~0.3–1 mg/kg (rat, oral)
Aflatoxins (B ₂ , G ₁ , G ₂)	<i>A. flavus, A. parasiticus</i> <i>Aspergillus ochraceus</i>	Similar effects to AFB ₁ but less potent: hepatotoxicity, genotoxicity	G1: Group 1; B2, G2: Group 2B	1–10 mg/kg (rat, oral)
Ochratoxin A (OTA)	<i>A. carbonarius, Penicillium verrucosum</i>	Nephrotoxic, immunotoxic, teratogenic, possible renal carcinogen	Group 2B	20–50 mg/kg (rat, oral)
Zearalenone (ZEN)	<i>Fusarium graminearum, F. culmorum</i>	Estrogenic activity (endocrine disruptor), fertility disorders	Group 3	1–3 g/kg (rat, oral)
Fumonisins (especially FB ₁)	<i>Fusarium verticillioides, F. proliferatum</i>	Nephrotoxicity, hepatotoxicity, disruption of sphingolipid metabolism	Group 2B	10–20 mg/kg (rat, oral)
T-2 Toxin (Trichothecene)	<i>Fusarium sporotrichioides, F. poae</i>	Strong inhibition of protein synthesis, dermal toxicity, severe immunosuppression	Group 3	1–5 mg/kg (mouse, oral)
Deoxynivalenol (DON / Vomitoxin)	<i>Fusarium graminearum, F. culmorum</i>	Immunosuppression, vomiting, anorexia; inhibition of protein synthesis	Group 3	46–78 mg/kg (mouse, oral)

6. Prevention

6.1. Physical methods

Improved harvesting, drying and post-harvest processes have significantly reduced ochratoxin A levels in medicinal plants [80]. Gamma radiation treatment has proven to be an effective method for preventing fungal deterioration in medicinal plants during long-term storage. In one study, gamma irradiation reduced the colony-forming units (CFU) per gram in all treated samples—including *Peumus boldus*, *Camellia sinensis*, *Maytenus ilicifolia*, and *Cassia angustifolia*—after 30 days of storage, with no detectable aflatoxin contamination [81]. However, heat treatment is generally ineffective since aflatoxins are heat-stable compounds [82].

6.2. Biological methods

Several authors recommend the use of essential oils as natural alternatives to synthetic fungicides for preventing fungal contamination and mycotoxin production in medicinal plants. In vitro studies demonstrated that 16 essential oils—such as orange, bergamot, lemon, coriander, eucalyptus, anise, lavender, chamomile (blue), tea tree, basil, geranium, rose, savory, thyme, viola, and oregano—exhibited antifungal activity against 21 fungal strains isolated from herbal drugs [83]. Another study showed that

essential oils derived from 12 medicinal plants, including anise, caraway, fennel, thyme, spearmint, basil, chamomile, marigold, hazanbul, qyssum, ghafath, and cinnamon, effectively inhibited both the growth and mycotoxin production of *Aspergillus flavus*, *Aspergillus parasiticus*, *Aspergillus ochraceus*, and *Fusarium moniliforme*, with the degree of inhibition depending on the concentration of the oils used [84].

In addition to essential oils, phenolic compounds found in plants offer promising antifungal properties. Compounds such as chlorophorin, iroko, maakianin, caffeic acid, ferulic acid, and vanillic acid have demonstrated varying degrees of inhibition against the growth of *Fusarium verticillioides* and its production of fumonisin B1 (FB1) [85]. Furthermore, Ajowan seed extract (*Trachyspermum ammi* (L.) Sprague ex Turrill) has shown potential as a biologically safe method to protect herbal medicines from aflatoxins by degrading AFG1, AFG2, AFB1, and AFB2 [86].

7. Conclusions

The data presented in this review clearly indicate that fungal contamination of herbal products is unavoidable, with specific factors favoring the growth of toxigenic strains and the production of mycotoxins. To protect consumer safety, the European Pharmacopoeia has established strict limits for the most hazardous mycotoxins in medicinal plants and their derivatives. Numerous studies report varying contamination levels, influenced by factors such as the country of origin, the plant species, and the detection methods employed. Mycotoxicity is linked to a range of human health issues, with clinical symptoms depending on the type and dose of mycotoxins ingested. Therefore, to ensure the safety of herbal medicines and their products, it is crucial to implement strategies that utilize natural substances for decontamination and prevention of mycotoxin formation.

References

- [1] WHO (World Health Organization), World Health Organization Resolution-Promotion and Development of Training and Research in Traditional Medicine, (1977).
- [2] Abou-Arab A.A.K., Soliman Kawther M., El Tantawy M.E., Badeaa R.I., Khayria N., Quantity estimation of some contaminants in commonly used medicinal plants in the Egyptian market. *Food Chemistry*, (1999), 67(4): 357-363.
- [3] Romagnoli B., Menna V., Gruppioni N., Bergamini C., Aflatoxins in spices, aromatic herbs, herb-teas and medicinal plants marketed in Italy. *Food Control*, (2007), 18(6): 697-701.
- [4] Ong C.K., Bodeker G., WHO Global Atlas of Traditional, Complementary, and Alternative Medicine. Kobe, Japan: World Health Organization, Centre for Health Development, (2005).
- [5] WHO (World Health Organization), WHO Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues. World Health Organization, Geneva, (2007).
- [6] Do K., An T., Oh S.-K., Moon Y., Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices. *Toxins*, (2015), 7(10): 4111-4130.
- [7] Ponzilacqua B., Rottinghaus G.E., Landers B.R., Oliveira C.A.F., Effects of medicinal herb and Brazilian traditional plant extracts on in vitro mycotoxin decontamination. *Food Control*, (2019), 100: 24-27.
- [8] Müller P., Basedow T., Aflatoxin contamination of pods of Indian Cassia senna L. (Caesalpiniaceae) before harvest, during drying and in storage: Reasons and possible methods of reduction. *Journal of Stored Products Research*, (2007), 43(4): 323-329.
- [9] Lee H.J., Ryu D., Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-occurrence. *Journal of Agricultural and Food Chemistry*, (2017), 65(33): 7034-7051.
- [10] Pitt J.I., Miller J.D., A Concise History of Mycotoxin Research. *Journal of Agricultural and Food Chemistry*, (2017), 65(33): 7021-7033.
- [11] Bugno A., Almodovar A.A.B., Pereira T.C., Pinto T.J.A., Sabino M., Occurrence of toxigenic fungi in herbal drugs. *Brazilian Journal of Microbiology*, (2006), 37(1): 47-51.
- [12] EP (European Pharmacopoeia), Council of Europe. European Directorate for the Quality of Medicines (EDQM), 7th ed, (2011).
- [13] Watson D.H., Moss M.O., Toxic fungal metabolites in food. *C R C Critical Reviews in Food Science and Nutrition*, (1985), 22(3): 177-198.

[14] Jelinek C.F., Pohland A.E., Wood G.E., Worldwide Occurrence of Mycotoxins in Foods and Feeds—An Update. *Journal of AOAC INTERNATIONAL*, (1989), 72(2): 223-230.

[15] Rizzo I., Varsavsky E., Vedoya G., Haidukowski M., Frade H., Chiale C., Fungal and aflatoxin contamination of medicinal herbs. *Mycotoxin Research*, (1998), 14(2): 46-53.

[16] Rizzo I., Vedoya G., Maurutto S., Haidukowski M., Varsavsky E., Assessment of toxigenic fungi on Argentinean medicinal herbs. *Microbiological Research*, (2004), 159(2): 113-120.

[17] Elshafie A.E., Al-Rashdi T.A., Al-Bahry S.N., Bakheit C.S., Fungi and aflatoxins associated with spices in the Sultanate of Oman. *Mycopathologia*, (2002), 155: 155-160.

[18] Roy A.K., Chourasia H.K., Effect of temperature on aflatoxin production in *Mucuna pruriens* seeds. *Applied and Environmental Microbiology*, (1989), 55(2): 531-532.

[19] Ames B.N., Magaw R., Gold L.S., Ranking Possible Carcinogenic Hazards. *Science, New Series*, (1987), 236(4799): 271-280.

[20] Beuchat L.R., Microbial stability as affected by wateractivity. *Cereals Foods World*, (1981), 26: 345-349.

[21] Beuchat L.R., Influence of Water Activity on Growth, Metabolic Activities and Survival of Yeasts and Molds. *Journal of Food Protection*, (1983), 46(2): 135-141.

[22] Trucksess M., Weaver C., Oles C.J., Rump L.V., White K.D., Betz J.M., Rader J.I., Use of multitoxin immunoaffinity columns for determination of aflatoxins and ochratoxin A in ginseng and ginger. *J. AOAC Int.* (2007), 90(4): 1042-1049.

[23] Santos L., Marin S., Sanchis V., Ramos A.J., Screening of mycotoxin multicontamination in medicinal and aromatic herbs sampled in Spain. *J. Sci.Food Agric.*, (2009), 89: 1802-1807.

[24] Saxena J., Methrota B.S., Screening of spices commonly marketed in India for natural occurrence of mycotoxins. *J. Food Compos. Anal.*, (1989), 2: 286-292.

[25] El Adlouni C., Tozlovanu M., Naman F., Faid M., Pfohl-Leszkowicz A., Preliminary data on the presence of mycotoxins (ochratoxin A, citrinin and aflatoxin B1) in black table olives “Greek style” of Moroccan origin. *Molecular Nutrition & Food Research*, (2006), 50(6): 507-512.

[26] Senyuva H.Z., Gilbert J., Identification of fumonisin B2, HT-2 toxin, patulin, and zearalenone in dried figs by liquid chromatography-time-of-flight mass spectrometry and liquid chromatography-mass spectrometry. *J. Food Prot.*, (2008), 71(7): 1500-1504.

[27] Senyuva H. Z., Gilbert J., Ozcan S., Ulken U., Survey for Co-occurrence of Ochratoxin A and Aflatoxin B1 in Dried Figs in Turkey by Using a Single Laboratory-Validated Alkaline Extraction Method for Ochratoxin A. *Journal of Food Protection*, (2005), 68(7): 1512-1515.

[28] Yu J., Current Understanding on Aflatoxin Biosynthesis and Future Perspective in Reducing Aflatoxin Contamination. *Toxins*, (2012), 4: 1024-1057.

[29] Kew M.C., Aflatoxins as a cause of hepatocellular carcinoma. *J. Gastrointest. Liver Dis.*, (2013), 22: 305-310.

[30] IARC (International agency for research on cancer), Monographs on the evaluation of the carcinogenic risk of chemicals to humans: Some naturallyoccurring substances: Food Items and Constituents, Heterocyclic AromaticAmines and Mycotoxins, (1993), 56: 245-521.

[31] Klich M.A., *Aspergillus flavus*: The major producer of aflatoxin. *Molecular Plant Pathology*, (2007), 8(6): 713-722.

[32] Amaike S., Keller N.P., *Aspergillus flavus*. *Annu. Rev. Phytopathol.* (2011), 49: 107-133.

[33] Selim M.I., Popendorf W., Ibrahim M.S., El-Sharkawy S., Kashory E.S., Aflatoxin B1 in common Egyptian foods. *J AOACInt*, (1996), 79:1124-1129.

[34] Roze L.V., Hong S.-Y., Linz J.E., Aflatoxin Biosynthesis: Current Frontiers. *Annu. Rev. Food Sci. Technol.*, (2013), 4: 293-311.

[35] Geissler F., Faustman E.M., Developmental toxicity of aflatoxin B1 in the rodent embryo in vitro: Contribution of exogenous biotransformation systems to toxicity. *Teratology*, (1988), 37(2): 101-111.

[36] Groopman J.D., Kensler W., Temporal patterns of aflatoxin albumin adducts in hepatitis B surface antigen-positive and antigen negative residents of Daxin, Qidong County, People’s Republic of China. *Cancer Epidemiol., Biomarkers Prev.*, (1996), 5(4): 253-261.

[37] Kew M.C., Synergistic interaction between aflatoxin B1 and hepatitis B virus in hepatocarcinogenesis. *Liver Int.*, (2003), 23: 405-409.

[38] Wild C.P., Montesano R.A., Model of interaction: Aflatoxins and hepatitis viruses in liver cancer aetiology and prevention. *Cancer Lett.*, (2009), 286: 22-28.

[39] Leeson S., Diaz G.J., Summers J.D., Poultry Metabolic Disorders and Mycotoxins. University Books, Guelph, Ontario, Canada, (1995), 249-298.

[40] Hengstler J.G., Van Der Burg B., Steinberg P., Oesch F., Interspecies Differences in Cancer Susceptibility and

Toxicity. *Drug Metabolism Reviews*, (1999), 31(4): 917-970.

[41] Huang X.-H., Zhang X.-H., Li Y.-H., Wang J.-L., Yan X., Xing L.-X., Wang F.-R., Experimental lung carcinogenic in vivo study of aflatoxin G1 in NIH mice. *Zhonghua Bing Li Xue Za Zhi Chin. J. Pathol.*, (2004), 33: 260-263.

[42] Shen H.T., Zhang X.H., Huang X.H., Li Y.H., Wang J., Yan X., Wang F., Histogenesis of lung adenocarcinoma induced by oral administration of mycotoxins in mice. *Wei Sheng Yan Jiu*, (2005), 34: 341-344.

[43] Guindon K.A., Foley J.F., Maronpot R.R., Massey T.E., Failure of catalase to protect against aflatoxin B1-induced mouse lung tumorigenicity. *Toxicology and Applied Pharmacology*, (2008), 227(2): 179-183.

[44] Pfohl-Leszkowicz A., Manderville R.A., Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. *Molecular Nutrition & Food Research*, (2007), 51(1): 61-99.

[45] Malir F., Ostry V., Pfohl-Leszkowicz A., Novotna E., Ochratoxin A: Developmental and Reproductive Toxicity-An Overview: reprotoxicity of ochratoxin. *Birth Defects Research Part B: Developmental and Reproductive Toxicology*, (2013), 98(6): 493-502.

[46] Bennett J.W., Klich M., Mycotoxins. *Clin. Microbiol. Rev.*, (2003), 16: 497-516.

[47] Pena A., Seifrtová M., Lino C., Silveira I., Solich P., Estimation of ochratoxin A in Portuguese population: new data on the occurrence in human urine by high performance liquid chromatography with fluorescence detection. *Food and Chemical Toxicology*, (2006), 44(9): 1449-1454.

[48] Bayman P., Baker J.L., Ochratoxins: A global perspective. *Mycopathologia*, (2006), 162(3): 215-223.

[49] Heussner A., Bingle L., Comparative Ochratoxin Toxicity: A Review of the Available Data. *Toxins*, (2015), 7(10): 4253-4282.

[50] Domijan A.-M., Fumonisin B1 : A Neurotoxic Mycotoxin / Fumonizin B1: NeurotoksičniMikotoksin. *Archives of Industrial Hygiene and Toxicology*, (2012), 63(4): 531-544.

[51] Rheeder J.P., Sydenham E.W., Marasas W.F.O., Thiel P.G., Shepherd G.S., vanSchalkwyk D.J., Fusarium moniliforme and fumonisins in corn in relationto human oesophageal cancer in Transkei. *Phytopathology*, (1992), 82: 353-357.

[52] Myburg R.B., Dutton M.F., Chuturgoon A.A., Cytotoxicity of fumonisin B1, diethylnitrosamine, and catechol on the SNO esophageal cancer cell line. *Environmental Health Perspectives*, (2002), 110(8): 813-815.

[53] Soriano J., González L., Catalá A., Mechanism of action of sphingolipids and theirmetabolites in the toxicity of fumonisin B. *Prog. Lipid Res.*, (2005), 44: 345-356.

[54] Bryła M., Roszko M., Szymczyk K., Jędrzejczak R., Obiedziński M.W., Sękul J., Fumonisins in plant-origin food and fodder – a review. *Food Additives & Contaminants*, (2013), 30(9): 1626-1640.

[55] EHC (Environmental Health Criteria), In: Marasas W.H.O., Miller J.D., Riley R.T., Visconti A. (Eds.), *Environmental Health Criteria 219, Fumonisin B1*, International Programmeon Chemical Safety (IPCS; UNEP, ILO and WHO). WHO, Geneva, (2000).

[56] Abeywickrama K., Bean G.A., Cytotoxicity of Fusarium species, mycotoxinsand culture filtrates of Fusarium species isolated from the medicinal plant Tribulus terrestris to mammals cells. *Mycopathologia*, (1992), 120: 189-193.

[57] Eriksen G.S., Alexander J., Fusarium Toxins in Cereals – A Risk Assessment. Nordic Council of Ministers; Tema Nord 502, Copenhagen, (1998), 7-27 and 45-58.

[58] Schoental R., precocious sexual development in puertorico and oestrogenic mycotoxins (zearalenone). *The Lancet*, (1983), 321(8323): 537.

[59] Sáenz de Rodriguez C.A., Bongiovanni A.M., Conde de Borrego L., An epidemic of precocious development in Puerto Rican children. *The Journal of Pediatrics*, (1985), 107(3): 393-396.

[60] Szuets P., Mesterhazy A., Falkay G.Y., Bartok T., Early telarche symptoms inchildren and their relations to zearalenone contamination in foodstuffs. *Cereal Res. Commun.*, (1997), 25: 429-436.

[61] Gao H.-P., Yoshizawa T., Further study on Fusarium mycotoxins in corn and wheat from a high-risk area for human esophageal cancer in China. *Mycotoxins*, (1997), 45: 51-55.

[62] Tomaszewski J., Mitursky R., Semczuk A., Tissue zearalenone concentrationin normal, hyperplastic, and neoplastic human endometrium. *Ginekol. Pol.*, (1998), 69: 363-366.

[63] Gray S.L., Lackey B.R., Tate P.L., Riley M.B., Camper N.D., Mycotoxins in Root Extracts of American and Asian Ginseng Bind Estrogen Receptors α and β . *Experimental Biology and Medicine*, (2004), 229(6): 560-568.

[64] JECFA, Joint FAO/WHO Expert Committee on Food Additives, 53rd Report. Safety evaluation of certain food additives and contaminants, WHO FoodAdditives Series 44. IPCS – International Programme on Chemical Safety. WHO, Geneva, (2000).

[65] Gaumy J.L., Bailly J.D., Ernard G., Guerre P., Zearalenone: Origin and effectson farm animals. *Rev. Med. Vet.*,

(2001), 152: 123-136.

[66] Yang J.Y., Zhang Y.F., Wang Y.Q., Toxic effects of zearalenone and a zearalenol on the regulation of steroidogenesis and testosterone production in mouse Leydig cells. *Toxicol. invitro*, (2007), 21: 558-565.

[67] Zinedine A., Soriano J.M., Moltó J.C., Mañes J., Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. *Food Chem. Toxicol.*, (2007), 45: 1-18.

[68] Coppock R.W., Swanson S.P., Gelberg H.B., Koritz G.D., Hoffman W.E., Buck W.B., Vesonder R.F., Preliminary study of the pharmacokinetics and toxicopathy of deoxynivalenol (vomitoxin) in swine. *Am. J. Vet. Res.*, (1985), 46: 169-174.

[69] Wu F., Groopman J.D., Pestka J.J., Public Health Impacts of Foodborne Mycotoxins. *Annu. Rev. Food Sci. Technol.*, (2014), 5: 351-372.

[70] Forsell J.H., Jensen R., Tai J.H., Witt M., Lin W.S., Pestka J.J., Comparison of acute toxicities of deoxynivalenol (vomitoxin) and 15-acetyldeoxynivalenol in the B6C3F1 mouse. *Food Chem. Toxicol.*, (1987), 25: 155-162.

[71] Rotter B.A., Invited Review: toxicology of deoxynivalenol (vomitoxin). *Journal of Toxicology and Environmental Health*, (1996), 48(1): 1-34.

[72] Escrivá L., Font G., Manyes L., In vivo toxicity studies of fusarium mycotoxins in the last decade: A review. *Food and Chemical Toxicology*, (2015), 78: 185-206.

[73] Königs M., Mulac D., Schwerdt G., Gekle M., Humpf H.-U., Metabolism and cytotoxic effects of T-2 toxin and its metabolites on human cells in primary culture. *Toxicol.*, (2009), 258: 106-115.

[74] Li Y., Wang Z., Beier R.C., Shen J., Smet D.D., De Saeger S., Zhang S., T-2 Toxin, a Trichothecene Mycotoxin: Review of Toxicity, Metabolism, and Analytical Methods. *Journal of Agricultural and Food Chemistry*, (2011), 59(8): 3441-3453.

[75] Wan Q., Wu G., He Q., Tang H., Wang Y., The toxicity of acute exposure to T-2 toxin evaluated by the metabolomics technique. *Molecular BioSystems*, (2015), 11(3): 882-891.

[76] Sun L.-Y., Li Q., Meng F.-G., Fu Y., Zhao Z.-J., Wang L.-H., T-2 Toxin Contamination in Grains and Selenium Concentration in Drinking Water and Grains in Kashin-Beck Disease Endemic Areas of Qinghai Province. *Biol. Trace Element Res.*, (2012), 150: 371-375.

[77] Chen J., Chu Y., Cao J., Wang W., Liu J., Wang J., Effects of T-2 toxin and selenium on chondrocyte expression of matrix metalloproteinases (MMP-1, MMP-13), α 2-macroglobulin (α 2M) and TIMPs. *Toxicology in Vitro*, (2011), 25(2): 492-499.

[78] Wang L.H., Fu Y., Shi Y.X., Wang W.G., T-2 Toxin Induces Degenerative Articular Changes in Rodents: Link to Kashin-Beck Disease. *Toxicologic Pathology*, (2011), 39(3): 502-507.

[79] Kang P., Yao Y., Yang J., Shen B., Zhou Z., Pei F., An animal model of Kashin-Beck disease induced by a low-nutrition diet and exposure to T-2 toxin. *Osteoarthritis and Cartilage*, (2013), 21(8), 1108-1115.

[80] Kabelitz L., Sievers H., Contaminants of medicinal and food herbs with a view to EU regulations. *Innov Food Technol.*, (2004), 25:7.

[81] Aquino S., Gonçalez E., Rossi M.H., de Campos Nogueira J.H., dos Reis T.A., Corrêa B., Evaluation of Fungal Burden and Aflatoxin Presence in Packed Medicinal Plants Treated by Gamma Radiation. *Journal of Food Protection*, (2010), 73(5): 932-937.

[82] Macdonald S., Castle L., A UK retail survey of aflatoxins in herbs and spices and their fate during cooking. *Food Additives & Contaminants*, (1996), 13(1): 121-128.

[83] Stević T., Berić T., Šavikin K., Soković M., Godevac D., Dimkić I., Stanković S., Antifungal activity of selected essential oils against fungi isolated from medicinal plant. *Industrial Crops and Products*, (2014), 55: 116-122.

[84] Soliman K.M., Badeaa R.I., Effect of Oil Extracted from Some Medicinal Plants on Different Mycotoxigenic Fungi. *Food and Chemical Toxicology*, (2002), 40(11): 1669-1675.

[85] Beekrum S., Govinden R., Padayachee T., Odhav B., Naturally occurring phenols: A detoxification strategy for fumonisin B. *Food Additives and Contaminants*, (2003), 20(5): 490-493.

[86] Velazhahan, R., Selvaraj V., Ayyathurai V., Vaikuntavasen P., Ramasamy S., Takeo I., Bernd F., Subbaratnam M., Detoxification of Aflatoxins by Seed Extracts of the Medicinal Plant, *Trachyspermum Ammi* (L.) Sprague Ex Turrill – Structural Analysis and Biological Toxicity of Degradation Product of Aflatoxin G1. *Food Control*, (2010), 21(5): 719-725.

